3.5.86 \(\int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx\) [486]

3.5.86.1 Optimal result
3.5.86.2 Mathematica [C] (verified)
3.5.86.3 Rubi [A] (verified)
3.5.86.4 Maple [A] (verified)
3.5.86.5 Fricas [B] (verification not implemented)
3.5.86.6 Sympy [F(-1)]
3.5.86.7 Maxima [F]
3.5.86.8 Giac [B] (verification not implemented)
3.5.86.9 Mupad [F(-1)]

3.5.86.1 Optimal result

Integrand size = 31, antiderivative size = 113 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {5 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{a^{5/2} d}-\frac {4 \sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a+a \sin (c+d x)}}\right )}{a^{5/2} d}-\frac {\cot (c+d x)}{a^2 d \sqrt {a+a \sin (c+d x)}} \]

output
5*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(5/2)/d-4*arctanh(1 
/2*cos(d*x+c)*a^(1/2)*2^(1/2)/(a+a*sin(d*x+c))^(1/2))/a^(5/2)/d*2^(1/2)-co 
t(d*x+c)/a^2/d/(a+a*sin(d*x+c))^(1/2)
 
3.5.86.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.48 (sec) , antiderivative size = 170, normalized size of antiderivative = 1.50 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )^5 \left ((32+32 i) (-1)^{3/4} \text {arctanh}\left (\left (\frac {1}{2}+\frac {i}{2}\right ) (-1)^{3/4} \left (-1+\tan \left (\frac {1}{4} (c+d x)\right )\right )\right )-\cot \left (\frac {1}{4} (c+d x)\right )+10 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-10 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+2 \sec \left (\frac {1}{2} (c+d x)\right )-\tan \left (\frac {1}{4} (c+d x)\right )\right )}{4 d (a (1+\sin (c+d x)))^{5/2}} \]

input
Integrate[(Cos[c + d*x]^2*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^(5/2),x]
 
output
((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])^5*((32 + 32*I)*(-1)^(3/4)*ArcTanh[( 
1/2 + I/2)*(-1)^(3/4)*(-1 + Tan[(c + d*x)/4])] - Cot[(c + d*x)/4] + 10*Log 
[1 + Cos[(c + d*x)/2] - Sin[(c + d*x)/2]] - 10*Log[1 - Cos[(c + d*x)/2] + 
Sin[(c + d*x)/2]] + 2*Sec[(c + d*x)/2] - Tan[(c + d*x)/4]))/(4*d*(a*(1 + S 
in[c + d*x]))^(5/2))
 
3.5.86.3 Rubi [A] (verified)

Time = 1.46 (sec) , antiderivative size = 212, normalized size of antiderivative = 1.88, number of steps used = 19, number of rules used = 18, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.581, Rules used = {3042, 3359, 3042, 3259, 3042, 3128, 219, 3252, 219, 3523, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a \sin (c+d x)+a)^{5/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^4}{\sin (c+d x)^2 (a \sin (c+d x)+a)^{5/2}}dx\)

\(\Big \downarrow \) 3359

\(\displaystyle \frac {\int \frac {\csc ^2(c+d x) \left (\sin ^2(c+d x)+1\right )}{\sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \int \frac {\csc (c+d x)}{\sqrt {\sin (c+d x) a+a}}dx}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin (c+d x)^2+1}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \int \frac {1}{\sin (c+d x) \sqrt {\sin (c+d x) a+a}}dx}{a^2}\)

\(\Big \downarrow \) 3259

\(\displaystyle \frac {\int \frac {\sin (c+d x)^2+1}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \left (\frac {\int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx}{a}-\int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {\int \frac {\sin (c+d x)^2+1}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \left (\frac {\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx}{a}-\int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx\right )}{a^2}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {\int \frac {\sin (c+d x)^2+1}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \left (\frac {2 \int \frac {1}{2 a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}+\frac {\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx}{a}\right )}{a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\int \frac {\sin (c+d x)^2+1}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \left (\frac {\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx}{a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {\int \frac {\sin (c+d x)^2+1}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}\right )}{a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\int \frac {\sin (c+d x)^2+1}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\frac {\int -\frac {\csc (c+d x) (a-3 a \sin (c+d x))}{2 \sqrt {\sin (c+d x) a+a}}dx}{a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 27

\(\displaystyle \frac {-\frac {\int \frac {\csc (c+d x) (a-3 a \sin (c+d x))}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {a-3 a \sin (c+d x)}{\sin (c+d x) \sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 3464

\(\displaystyle \frac {-\frac {\int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx-4 a \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 3042

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx-4 a \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {-\frac {\frac {8 a \int \frac {1}{2 a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}+\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {\int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx+\frac {4 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 3252

\(\displaystyle \frac {-\frac {\frac {4 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {2 a \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {-\frac {\frac {4 \sqrt {2} \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {2 \sqrt {a} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {\cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{a^2}-\frac {2 \left (\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}\right )}{a^2}\)

input
Int[(Cos[c + d*x]^2*Cot[c + d*x]^2)/(a + a*Sin[c + d*x])^(5/2),x]
 
output
(-2*((-2*ArcTanh[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/(Sqrt[a 
]*d) + (Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + 
 d*x]])])/(Sqrt[a]*d)))/a^2 + (-1/2*((-2*Sqrt[a]*ArcTanh[(Sqrt[a]*Cos[c + 
d*x])/Sqrt[a + a*Sin[c + d*x]]])/d + (4*Sqrt[2]*Sqrt[a]*ArcTanh[(Sqrt[a]*C 
os[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/d)/a - Cot[c + d*x]/(d*S 
qrt[a + a*Sin[c + d*x]]))/a^2
 

3.5.86.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3259
Int[1/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) 
+ (f_.)*(x_)])), x_Symbol] :> Simp[b/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + 
 f*x]], x], x] - Simp[d/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*S 
in[e + f*x]), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] & 
& EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3359
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[-2/(a*b*d)   Int[(d* 
Sin[e + f*x])^(n + 1)*(a + b*Sin[e + f*x])^(m + 2), x], x] + Simp[1/a^2   I 
nt[(d*Sin[e + f*x])^n*(a + b*Sin[e + f*x])^(m + 2)*(1 + Sin[e + f*x]^2), x] 
, x] /; FreeQ[{a, b, d, e, f, n}, x] && EqQ[a^2 - b^2, 0] && LtQ[m, -1]
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.5.86.4 Maple [A] (verified)

Time = 0.15 (sec) , antiderivative size = 132, normalized size of antiderivative = 1.17

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (\sin \left (d x +c \right ) a \left (4 \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )-5 \,\operatorname {arctanh}\left (\frac {\sqrt {a -a \sin \left (d x +c \right )}}{\sqrt {a}}\right )\right )+\sqrt {a -a \sin \left (d x +c \right )}\, \sqrt {a}\right )}{a^{\frac {7}{2}} \sin \left (d x +c \right ) \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(132\)

input
int(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x,method=_RETURNVERBO 
SE)
 
output
-1/a^(7/2)*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)*(sin(d*x+c)*a*(4*2^(1/ 
2)*arctanh(1/2*(a-a*sin(d*x+c))^(1/2)*2^(1/2)/a^(1/2))-5*arctanh((a-a*sin( 
d*x+c))^(1/2)/a^(1/2)))+(a-a*sin(d*x+c))^(1/2)*a^(1/2))/sin(d*x+c)/cos(d*x 
+c)/(a+a*sin(d*x+c))^(1/2)/d
 
3.5.86.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 421 vs. \(2 (96) = 192\).

Time = 0.29 (sec) , antiderivative size = 421, normalized size of antiderivative = 3.73 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {5 \, {\left (\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 1\right )} \sin \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) + \frac {8 \, \sqrt {2} {\left (a \cos \left (d x + c\right )^{2} - {\left (a \cos \left (d x + c\right ) + a\right )} \sin \left (d x + c\right ) - a\right )} \log \left (-\frac {\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) - 2\right )} \sin \left (d x + c\right ) - \frac {2 \, \sqrt {2} \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{\sqrt {a}} + 3 \, \cos \left (d x + c\right ) + 2}{\cos \left (d x + c\right )^{2} - {\left (\cos \left (d x + c\right ) + 2\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 2}\right )}{\sqrt {a}} + 4 \, \sqrt {a \sin \left (d x + c\right ) + a} {\left (\cos \left (d x + c\right ) - \sin \left (d x + c\right ) + 1\right )}}{4 \, {\left (a^{3} d \cos \left (d x + c\right )^{2} - a^{3} d - {\left (a^{3} d \cos \left (d x + c\right ) + a^{3} d\right )} \sin \left (d x + c\right )\right )}} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x, algorithm="f 
ricas")
 
output
1/4*(5*(cos(d*x + c)^2 - (cos(d*x + c) + 1)*sin(d*x + c) - 1)*sqrt(a)*log( 
(a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 + 4*(cos(d*x + c)^2 + (cos(d*x + c) 
 + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3)*sqrt(a*sin(d*x + c) + a)*sqrt(a) 
- 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 + 8*a*cos(d*x + c) - a)*sin(d*x + c 
) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + c 
) - cos(d*x + c) - 1)) + 8*sqrt(2)*(a*cos(d*x + c)^2 - (a*cos(d*x + c) + a 
)*sin(d*x + c) - a)*log(-(cos(d*x + c)^2 - (cos(d*x + c) - 2)*sin(d*x + c) 
 - 2*sqrt(2)*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c) - sin(d*x + c) + 1)/sq 
rt(a) + 3*cos(d*x + c) + 2)/(cos(d*x + c)^2 - (cos(d*x + c) + 2)*sin(d*x + 
 c) - cos(d*x + c) - 2))/sqrt(a) + 4*sqrt(a*sin(d*x + c) + a)*(cos(d*x + c 
) - sin(d*x + c) + 1))/(a^3*d*cos(d*x + c)^2 - a^3*d - (a^3*d*cos(d*x + c) 
 + a^3*d)*sin(d*x + c))
 
3.5.86.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4*csc(d*x+c)**2/(a+a*sin(d*x+c))**(5/2),x)
 
output
Timed out
 
3.5.86.7 Maxima [F]

\[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4} \csc \left (d x + c\right )^{2}}{{\left (a \sin \left (d x + c\right ) + a\right )}^{\frac {5}{2}}} \,d x } \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x, algorithm="m 
axima")
 
output
integrate(cos(d*x + c)^4*csc(d*x + c)^2/(a*sin(d*x + c) + a)^(5/2), x)
 
3.5.86.8 Giac [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 205 vs. \(2 (96) = 192\).

Time = 0.42 (sec) , antiderivative size = 205, normalized size of antiderivative = 1.81 \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\frac {\sqrt {2} \sqrt {a} {\left (\frac {5 \, \sqrt {2} \log \left (\frac {{\left | -2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}{{\left | 2 \, \sqrt {2} + 4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) \right |}}\right )}{a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} + \frac {8 \, \log \left (\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {8 \, \log \left (-\sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right ) + 1\right )}{a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )} - \frac {4 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )}{{\left (2 \, \sin \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )^{2} - 1\right )} a^{3} \mathrm {sgn}\left (\cos \left (-\frac {1}{4} \, \pi + \frac {1}{2} \, d x + \frac {1}{2} \, c\right )\right )}\right )}}{4 \, d} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^2/(a+a*sin(d*x+c))^(5/2),x, algorithm="g 
iac")
 
output
1/4*sqrt(2)*sqrt(a)*(5*sqrt(2)*log(abs(-2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d* 
x + 1/2*c))/abs(2*sqrt(2) + 4*sin(-1/4*pi + 1/2*d*x + 1/2*c)))/(a^3*sgn(co 
s(-1/4*pi + 1/2*d*x + 1/2*c))) + 8*log(sin(-1/4*pi + 1/2*d*x + 1/2*c) + 1) 
/(a^3*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 8*log(-sin(-1/4*pi + 1/2*d*x 
+ 1/2*c) + 1)/(a^3*sgn(cos(-1/4*pi + 1/2*d*x + 1/2*c))) - 4*sin(-1/4*pi + 
1/2*d*x + 1/2*c)/((2*sin(-1/4*pi + 1/2*d*x + 1/2*c)^2 - 1)*a^3*sgn(cos(-1/ 
4*pi + 1/2*d*x + 1/2*c))))/d
 
3.5.86.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos ^2(c+d x) \cot ^2(c+d x)}{(a+a \sin (c+d x))^{5/2}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{{\sin \left (c+d\,x\right )}^2\,{\left (a+a\,\sin \left (c+d\,x\right )\right )}^{5/2}} \,d x \]

input
int(cos(c + d*x)^4/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(5/2)),x)
 
output
int(cos(c + d*x)^4/(sin(c + d*x)^2*(a + a*sin(c + d*x))^(5/2)), x)